Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 15(18): 6860-6866, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38725492

RESUMO

Metal-organic frameworks (MOFs) are appealing candidate materials to design new photoelectrodes for use in solar energy conversion because of their modular nature and chemical versatility. However, to date there are few examples of MOFs that can be directly used as photoelectrodes, for which they must be able to afford charge separation upon light absorption, and promote the catalytic dissociation of water molecules, while maintaining structural integrity. Here, we have explored the use of the organic linker anthraquinone-2, 6-disulfonate (2, 6-AQDS) for the preparation of MOFs to be used as photoanodes. Thus, the reaction of 2, 6-AQDS with Bi(iii) or a combination of Bi(iii) and Fe(iii) resulted in two new MOFs, BiPF-10 and BiFePF-15, respectively. They display similar structural features, where the metal elements are disposed in inorganic-layer building units, which are pillared by the organic linkers by coordination bonds through the sulfonic acid groups. We show that the introduction of iron in the structure plays a crucial role for the practical use of the MOFs as a robust photoelectrode in a photoelectrochemical cell, producing as much as 1.23 mmol H2 cm-2 with the use of BiFePF-15 as photoanode. By means of time-resolved and electrochemical impedance spectroscopic studies we have been able to unravel the charge transfer mechanism, which involves the formation of a radical intermediate species, exhibiting a longer-lived lifetime by the presence of the iron-oxo clusters in BiFePF-15 to reduce the charge transfer resistance.

2.
Water Res ; 255: 121469, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38493740

RESUMO

Soil salinization poses a significant challenge to agricultural activities. To address this, the agricultural industry seeks an irrigation water solution that reduces both ionic conductivity and sodium adsorption rate (SAR), thereby diminishing the risks of soil sodification and fostering sustainable crop production. Capacitive deionization (CDI) is an attractive electrochemical technology to advance this search. Recently, a one-dimensional transient CDI model unveiled a capacitive ion-exchange mechanism presenting the potential to adjust the treated water composition by modifying monovalent and divalent cation concentrations, thereby influencing the SAR index. This behavior would be achieved by using electrodes rich in surface functional groups able to efficiently capture divalent cations during conditioning and releasing them during charging while capturing monovalent ions. Beyond the theoretical modelling, the current experimental research demonstrates, for the first time, the effectiveness of the capacitive ion-exchange mechanism in a CDI pilot plant using real water samples spiked with solutions containing specific mono and divalent ions. Electrosorption experiments and computational modeling, specifically Density-Functional Theory (DFT), were used along with the analysis of the surface functional groups present in the electrodes to describe the capacitive ion-exchange phenomenon and validate the steps involved on it, highlighting the conditioning as a critical step. Various operational and flow modes confirm the versatility of CDI technology, achieving separation factors (RMg/Na) of 5-6 in batch, raising production from 0.5 to 0.8 L m-2 h-1 (batch) to 8.0-8.1 L m-2 h-1 when using single pass although reducing RMg/Na to 2. The reliability of the CDI technology in reducing SAR was also successfully tested with different influent compositions, including magnesium and calcium. Finally, the robustness of the capacitive ion-exchange mechanism was validated by a second CDI laboratory 9-cell stack cycled over 350 cycles. Our results confirm the reported theoretical model and expands the conclusions through the experiments in a pilot plant showing direct implications for employing CDI in agricultural applications.

3.
ACS Appl Energy Mater ; 7(6): 2101-2108, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38550299

RESUMO

One of the main challenges to expand the use of titanium dioxide (titania) as a photocatalyst is related to its large band gap energy and the lack of an atomic scale description of the reduction mechanisms that may tailor the photocatalytic properties. We show that rutile TiO2 single crystals annealed in the presence of atomic hydrogen experience a strong reduction and structural rearrangement, yielding a material that exhibits enhanced light absorption, which extends from the ultraviolet to the near-infrared (NIR) spectral range, and improved photoelectrocatalytic performance. We demonstrate that both magnitudes behave oppositely: heavy/mild plasma reduction treatments lead to large/negligible spectral absorption changes and poor/enhanced (×10) photoelectrocatalytic performance, as judged from the higher photocurrent. To correlate the photoelectrochemical performance with the atomic and chemical structures of the hydrogen-reduced materials, we have modeled the process with in situ scanning tunneling microscopy measurements, which allow us to determine the initial stages of oxygen desorption and the desorption/diffusion of Ti atoms from the surface. This multiscale study opens a door toward improved materials for diverse applications such as more efficient rutile TiO2-based photoelectrocatalysts, green photothermal absorbers for solar energy applications, or NIR-sensing materials.

5.
ACS Appl Mater Interfaces ; 16(9): 11467-11478, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38382920

RESUMO

Plasmonic photocatalysis has been limited by the high cost and scalability of plasmonic materials, such as Ag and Au. By focusing on earth-abundant photocatalyst/plasmonic materials (HxMoO3) and Pd as a catalyst, we addressed these challenges by developing a solventless mechanochemical synthesis of Pd/HxMoO3 and optimizing photocatalytic activities in the visible range. We investigated the effect of HxMoO3 band gap excitation (at 427 nm), Pd interband transitions (at 427 nm), and HxMoO3 localized surface plasmon resonance (LSPR) excitation (at 640 nm) over photocatalytic activities toward the hydrogen evolution and phenylacetylene hydrogenation as model reactions. Although both excitation wavelengths led to comparable photoenhancements, a 110% increase was achieved under dual excitation conditions (427 + 640 nm). This was assigned to a synergistic effect of optical excitations that optimized the generation of energetic electrons at the catalytic sites. These results are important for the development of visible-light photocatalysts based on earth-abundant components.

6.
ACS Catal ; 13(22): 14914-14927, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38026817

RESUMO

Stereochemically defined tetrasubstituted olefins are widespread structural elements of organic molecules and key intermediates in organic synthesis. However, flexible methods enabling stereodivergent access to E and Z isomers of fully substituted alkenes from a common precursor represent a significant challenge and are actively sought after in catalysis, especially those amenable to complex multifunctional molecules. Herein, we demonstrate that iterative dual-metal and energy transfer catalysis constitutes a unique platform for achieving stereodivergence in the difunctionalization of internal alkynes. The utility of this approach is showcased by the stereodivergent synthesis of both stereoisomers of tetrasubstituted ß-boryl acrylates from internal alkynoates with excellent stereocontrol via sequential carboboration and photoisomerization. The reluctance of electron-deficient internal alkynes to undergo catalytic carboboration has been overcome through cooperative Cu/Pd-catalysis, whereas an Ir complex was identified as a versatile sensitizer that is able to photoisomerize the resulting sterically crowded alkenes. Mechanistic studies by means of quantum-chemical calculations, quenching experiments, and transient absorption spectroscopy have been applied to unveil the mechanism of both steps.

7.
ACS Appl Mater Interfaces ; 15(46): 53382-53394, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37950688

RESUMO

Photocatalytic nitrogen fixation to ammonia and nitrates holds great promise as a sustainable route powered by solar energy and fed with renewable energy resources (N2 and H2O). This technology is currently under deep investigation to overcome the limited efficiency of the process. The rational design of efficient and robust photocatalysts is crucial to boost the photocatalytic performance. Widely used bulk materials generally suffer from charge recombination due to poor interfacial charge transfer and difficult surface diffusion. To overcome this limitation, this work explores the use of aqueous-dispersed colloidal semiconductor nanocrystals (NCs) with precise morphological control, better carrier mobility, and stronger redox ability. Here, the TiO2 framework has been modified via aliovalent molybdenum doping, and resulting Mo-TiO2 NCs have been functionalized with charged terminating hydroxyl groups (OH-) for the simultaneous production of ammonia, nitrites, and nitrates via photocatalytic nitrogen reduction in water, which has not been previously found in the literature. Our results demonstrate the positive effect of Mo-doping and nanostructuration on the overall N2 fixation performance. Ammonia production rates are found to be dependent on the Mo-doping loading. 5Mo-TiO2 delivers the highest NH4+ yield rate (ca. 105.3 µmol g-1 L-1 h-1) with an outstanding 90% selectivity, which is almost four times higher than that obtained over bare TiO2. The wide range of advance characterization techniques used in this work reveals that Mo-doping enhances charge-transfer processes and carriers lifetime as a consequence of the creation of new intra band gap states in Mo-doped TiO2 NCs.

8.
ACS Appl Mater Interfaces ; 15(23): 28739-28746, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37253189

RESUMO

Forming semiconductor heterojunctions is a promising strategy to boost the efficiency of solar-driven photoelectrochemical (PEC) water splitting by accelerating the separation and transport of photogenerated charge carriers via an interfacial electric field. However, there is limited research considering the influence of electrolytes on the band alignment of the heterojunction under PEC conditions. In this work, we use a single crystal NiCo2O4/SrTiO3 (NCO/STO) heterojunction with atomic-precision controlled thickness as a model photoelectrode to study the band structure modulations upon getting in contact with the electrolyte and the correlation with the PEC activity. It is found that the band alignment can be tuned by the control of p-n heterojunction film thickness and regulated by the water redox potential (Eredox). When the Fermi level (EF) of the heterojunction is higher/lower than the Eredox, the band bending at the NCO/STO-electrolyte interface will increase/decrease after contacting with the electrolyte. However, when the band bending width of the NCO layer is thinner than its thickness, the electrolyte will not influence the band alignment at the NCO/STO interface. In addition, PEC characterization results show that the 1 nm NCO/STO heterojunction photoanode exhibits superior water-splitting performance, owing to the optimum band structure of the p-n heterojunction and the shorter charge transfer distance.

9.
Nat Commun ; 14(1): 2506, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37130858

RESUMO

Luminescent metal-organic frameworks are an emerging class of optical sensors, able to capture and detect toxic gases. Herein, we report the incorporation of synergistic binding sites in MOF-808 through post-synthetic modification with copper for optical sensing of NO2 at remarkably low concentrations. Computational modelling and advanced synchrotron characterization tools are applied to elucidate the atomic structure of the copper sites. The excellent performance of Cu-MOF-808 is explained by the synergistic effect between the hydroxo/aquo-terminated Zr6O8 clusters and the copper-hydroxo single sites, where NO2 is adsorbed through combined dispersive- and metal-bonding interactions.

10.
ACS Appl Mater Interfaces ; 14(45): 50739-50750, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36321841

RESUMO

The design of an active, effective, and economically viable catalyst for CO2 conversion into value-added products is crucial in the fight against global warming and energy demand. We have developed very efficient catalysts for reverse water-gas shift (rWGS) reaction. Specific conditions of the synthesis by combustion allow the obtention of macroporous materials based on nanosized Ni particles supported on a mixed oxide of high purity and crystallinity. Here, we show that Ni/La-doped CeO2 catalysts─with the "right" Ni and La proportions─have an unprecedented catalytic performance per unit mass of catalyst for the rWGS reaction as the first step toward CO2 valorization. Correlations between physicochemical properties and catalytic activity, obtained using a combination of different techniques such as X-ray and neutron powder diffraction, Raman spectroscopy, in situ near ambient pressure X-ray photoelectron spectroscopy, electron microscopy, and catalytic testing, point out to optimum values for the Ni loading and the La proportion. Density functional theory calculations of elementary steps of the reaction on model Ni/ceria catalysts aid toward the microscopic understanding of the nature of the active sites. This finding offers a fundamental basis for developing economical catalysts that can be effectively used for CO2 reduction with hydrogen. A catalyst based on Ni0.07/(Ce0.9La0.1Ox)0.93 shows a CO production of 58 × 10-5 molCO·gcat-1·s-1 (700 °C, H2/CO2 = 2; selectivity to CO > 99.5), being stable for 100 h under continuous reaction.

11.
J Am Chem Soc ; 144(36): 16262-16266, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-35960870

RESUMO

A novel synthetic approach is described for the targeted preparation of multivariate metal-organic frameworks (MTV-MOFs) with specific combinations of metal elements. This methodology is based on the use of molecular complexes that already comprise desired metal-atom combinations, as building units for the MTV-MOF synthesis. These units are transformed into the MOF structural constituents through a ligand/linker exchange process that involves structural modifications while preserving their originally encoded atomic combination. Thus, through the use of heterometallic ring-shaped molecules combining gallium and nickel or cobalt, we have obtained MOFs with identical combinations of the metal elements, now incorporated in the rod-shaped secondary building unit, as confirmed with a combination of X-ray and electron diffraction, electron microscopy, and X-ray absorption spectroscopy techniques.


Assuntos
Gálio , Estruturas Metalorgânicas , Cobalto , Gálio/química , Ligantes , Estruturas Metalorgânicas/química , Níquel
12.
Small ; 18(37): e2201351, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35971163

RESUMO

Solar energy conversion through photoelectrochemical cells by organic semiconductors is a hot topic that continues to grow due to the promising optoelectronic properties of this class of materials. In this sense, conjugated polymers have raised the interest of researchers due to their interesting light-harvesting properties. Besides, their extended π-conjugation provides them with an excellent charge conduction along the whole structure. In particular, conjugated porous polymers (CPPs) exhibit an inherent porosity and three-dimensional structure, offering greater surface area, and higher photochemical and mechanical stability than their linear relatives (conjugated polymers, CPs). However, CPP synthesis generally provides large particle powders unsuitable for thin film preparation, limiting its application in optoelectronic devices. Here, a synthetic strategy is presented to prepare nanostructures of a CPP suitable to be used as photoelectrode in a photoelectrochemical (PEC) cell. In this way, electronic and photoelectrochemical properties are measured and, attending to the optoelectronic properties, two hybrid photoelectrodes (photoanode and photocathode) are designed and built to assemble a tandem PEC cell. The final device exhibits photocurrents of 0.5 mA cm-2 at a 0.7 V in the two electrode configuration and the hydrogen evolution reaction is observed and quantified by gas chromatography, achieving 581 µmol of H2 in a one-hour reaction.


Assuntos
Hidrogênio , Nanoestruturas , Hidrogênio/química , Nanoestruturas/química , Processos Fotoquímicos , Polímeros , Água/química
13.
Chem Mater ; 34(15): 7029-7041, 2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-35965890

RESUMO

The incorporation of multiple metal atoms in multivariate metal-organic frameworks is typically carried out through a one-pot synthesis procedure that involves the simultaneous reaction of the selected elements with the organic linkers. In order to attain control over the distribution of the elements and to be able to produce materials with controllable metal combinations, it is required to understand the synthetic and crystallization processes. In this work, we have completed a study with the RPF-4 MOF family, which is made of various rare-earth elements, to investigate and determine how the different initial combinations of metal cations result in different atomic distributions in the obtained materials. Thus, we have found that for equimolar combinations involving lanthanum and another rare-earth element, such as ytterbium, gadolinium, or dysprosium, a compositional segregation takes place in the products, resulting in crystals with different compositions. On the contrary, binary combinations of ytterbium, gadolinium, erbium, and dysprosium result in homogeneous distributions. This dissimilar behavior is ascribed to differences in the crystallization pathways through which the MOF is formed. Along with the synthetic and crystallization study and considering the structural features of this MOF family, we also disclose here a comprehensive characterization of the magnetic properties of the compounds and the heat capacity behavior under different external magnetic fields.

14.
J Am Chem Soc ; 144(28): 13006-13017, 2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35786909

RESUMO

A dual catalyst system based on ligand exchange of two diphosphine ligands possessing different properties in a copper complex has been devised to merge metal- and photocatalytic activation modes. This strategy has been applied to the formal anti-hydroboration of activated internal alkynes via a tandem sequence in which Cu/Xantphos catalyzes the B2pin2-syn-hydroboration of the alkyne whereas Cu/BINAP serves as a photocatalyst for visible light-mediated isomerization of the resulting alkenyl boronic ester. Photochemical studies by means of UV-vis absorption, steady-state and time-resolved fluorescence, and transient absorption spectroscopy have allowed characterizing the photoactive Cu/BINAP species in the isomerization reaction and its interaction with the intermediate syn-alkenyl boronic ester through energy transfer from the triplet excited state of the copper catalyst. In addition, mechanistic studies shed light into catalyst speciation and the interplay between the two catalytic cycles as critical success factors.


Assuntos
Alcinos , Cobre , Alcinos/química , Boro/química , Catálise , Cobre/química , Ésteres , Ligantes
15.
Artigo em Inglês | MEDLINE | ID: mdl-35849480

RESUMO

The present study proposes a laser irradiation method to superficially reduce BiVO4 photoelectrodes and boost their water oxidation reaction performance. The origin of this enhanced performance toward oxygen evolution reaction (OER) was studied using a combination of a suite of structural, chemical, and mechanistic advanced characterization techniques including X-ray photoelectron (XPS), X-ray absorption spectroscopy (XAS), electrochemical impedance spectroscopy (EIS), and transient absorption spectroscopy (TAS), among others. We found that the reduction of the material is localized at the surface of the sample and that this effect creates effective n-type doping and a shift to more favorable energy band positions toward water oxidation. This thermodynamic effect, together with the change in sample morphology to larger and denser domains, results in an extended lifetime of the photogenerated carriers and improved charge extraction. In addition, the stability of the reduced sample in water was also confirmed. All of these effects result in a two-fold increase in the photocurrent density of the laser-treated samples.

16.
J Photochem Photobiol B ; 230: 112444, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35429826

RESUMO

Benzotriazole UV-stabilizers (BUVSs) are commonly used in industry as solar filters, due to their strong UV light absorption. Because of their extended usage, environmental contamination of waters due to BUVSs constitutes a growing concern. Direct photodegradation of BUVSs is not efficient due to their intrinsic thermal pathways to release the absorbed light. Nevertheless, their abatement in natural environments could be assisted by chromophoric dissolved organic matter. Among the BUVSs, three representative candidates were selected, UV-326, UV-327 and UV-328, to demonstrate the potential of Riboflavin (RF) as a natural visible-light absorbing photocatalyst for the abatement of these recalcitrant pollutants under reductive conditions. The use of visible light and DABCO, as a model sacrificial electron donor, generates the radical anion RFTA.-. This key species reacts with the solar filters, achieving their reductive abatement from the medium. Moreover, the participation of every potential reactive species has been investigated by photophysical techniques, together with determination of the quenching rate constant for every reaction pathway. Consequently, evidence supported the main role of the reductive photodegradation pathway, being RFTA.- the key species in the abatement of BUVSs.


Assuntos
Fármacos Fotossensibilizantes , Raios Ultravioleta , Luz , Fotólise , Triazóis
17.
Materials (Basel) ; 15(3)2022 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-35160788

RESUMO

In this work, the role of In2O3 in a heterojunction with TiO2 is studied as a way of increasing the photocatalytic activity for gas-phase CO2 reduction using water as the electron donor and UV irradiation. Depending on the nature of the employed In2O3, different behaviors appear. Thus, with the high crystallite sizes of commercial In2O3, the activity is improved with respect to TiO2, with modest improvements in the selectivity to methane. On the other hand, when In2O3 obtained in the laboratory, with low crystallite size, is employed, there is a further change in selectivity toward CH4, even if the total conversion is lower than that obtained with TiO2. The selectivity improvement in the heterojunctions is attributed to an enhancement in the charge transfer and separation with the presence of In2O3, more pronounced when smaller particles are used as in the case of laboratory-made In2O3, as confirmed by time-resolved fluorescence measurements. Ternary systems formed by these heterojunctions with silver nanoparticles reflect a drastic change in selectivity toward methane, confirming the role of silver as an electron collector that favors the charge transfer to the reaction medium.

18.
Biomedicines ; 9(12)2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34944769

RESUMO

Up-Conversion materials have received great attention in drug delivery applications in recent years. A specifically emerging field includes the development of strategies focusing on photon processes that promote the development of novel platforms for the efficient transport and the controlled release of drug molecules in the harsh microenvironment. Here, modified reaction time, thermal treatment, and pH conditions were controlled in the synthesis of NaYF4:Yb,Tm up-converted (UC) material to improve its photoluminescence properties. The best blue-emission performance was achieved for the UC3 sample prepared through 24 h-synthesis without thermal treatment at a pH of 5, which promotes the presence of the ß-phase and smaller particle size. NaYF4:Yb,Tm has resulted in a highly efficient blue emitter material for light-driven drug release under near-IR wavelength. Thus, NaYF4:Yb,Tm up-converted material promotes the N-O bond cleavage of the oxime ester of Ciprofloxacin (prodrug) as a highly efficient photosensitized drug delivery process. HPLC chromatography and transient absorption spectroscopy measurements were performed to evaluate the drug release conversion rate. UC3 has resulted in a very stable and easily recovered material that can be used in several reaction cycles. This straightforward methodology can be extended to other drugs containing photoactive chromophores and is present as an alternative for drug release systems.

19.
Nat Commun ; 12(1): 5937, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34642345

RESUMO

Development of sustainable processes for hydrocarbons synthesis is a fundamental challenge in chemistry since these are of unquestionable importance for the production of many essential synthetic chemicals, materials and carbon-based fuels. Current industrial processes rely on non-abundant metal catalysts, temperatures of hundreds of Celsius and pressures of tens of bars. We propose an alternative gas phase process under mild reaction conditions using only atomic carbon, molecular hydrogen and an inert carrier gas. We demonstrate that the presence of CH2 and H radicals leads to efficient C-C chain growth, producing micron-length fibres of unbranched alkanes with an average length distribution between C23-C33. Ab-initio calculations uncover a thermodynamically favourable methylene coupling process on the surface of carbonaceous nanoparticles, which is kinematically facilitated by a trap-and-release mechanism of the reactants and nanoparticles that is confirmed by a steady incompressible flow simulation. This work could lead to future alternative sustainable synthetic routes to critical alkane-based chemicals or fuels.

20.
J Am Chem Soc ; 142(1): 318-326, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31809033

RESUMO

Solar fuels production is a cornerstone in the development of emerging sustainable energy conversion and storage technologies. Light-induced H2 production from water represents one of the most crucial challenges to produce renewable fuel. Metal-organic frameworks (MOFs) are being investigated in this process, due to the ability to assemble new structures with the use of suitable photoactive building blocks. However, the identification of the reaction intermediates remains elusive, having negative impacts in the design of more efficient materials. Here, we report the synthesis and characterization of a new MOF prepared with the use of bismuth and dithieno[3,2-b:2',3'-d]thiophene-2,6-dicarboxylic acid (DTTDC), an electron-rich linker with hole transport ability. By combining theoretical studies and time-resolved spectroscopies, such as core hole clock and laser flash photolysis measurements, we have completed a comprehensive study at different time scales (fs to ms) to determine the effect of competitive reactions on the overall H2 production. We detect the formation of an intermediate radical anion upon reaction of photogenerated holes with an electron donor, which plays a key role in the photoelectrocatalytic processes. These results shed new light on the use of MOFs for solar fuel production.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...